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Abstract

Inspired by the recent conjectures concerning the existence of stable bundles on Calabi–Yau threefolds arising from string
theory, we consider the possibility of strengthening the classical Bogomolov inequality. We show the existence of stable bundles
violating such inequality on many complete intersections.
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1. Introduction

Let X be a smooth complex projective variety of dimension n ≥ 2 and H an ample line bundle on X . It is a
natural problem to determine for which r ∈ Z and ci ∈ H2i (X, Z) there exists an H -stable vector bundle (or more
generally torsion-free sheaf) E on X of rank r and the Chern classes ci (E) = ci . The problem has been investigated
extensively in the case of algebraic surfaces [2,5,11]. By means of the elementary transformations, a general existence
result in higher dimension has been obtained by Maruyama [6], under the assumption that r ≥ n and c2(E) · Hn−2

is sufficiently large. In [9,10] we considered the existence problem on Calabi–Yau manifolds, generalizing our earlier
works on surfaces [7,8].

Recently, very interesting conjectures concerning sufficient conditions for the existence of stable bundles on
Calabi–Yau threefolds have been proposed, which are inspired by superstring theory [3]. One of the conjectures
states that for any smooth ample divisor D on a Calabi–Yau threefold X and r ≥ 2 ∈ Z, ci ∈ H2i (D, Z), there exists
a stable bundle E on D of rank r and Chern classes ci (E) = ci if c1 lifts to H2(X, Z) and the following inequality is
satisfied:

2rc2(E) − (r − 1)c1(E)2
−

r2

12
c2(D) > 0.

Further, in the appendix of [3], the problem has been posed of whether on a simply connected surface D with ample
or trivial canonical bundle, every stable bundle E with non-trivial moduli space obeys the inequality

2rc2(E) − (r − 1)c1(E)2
≥

r2

12
c2(D)
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which may be considered as a strengthening of the well-known Bogomolov inequality:

2rc2(E) − (r − 1)c1(E)2
≥ 0.

The extra term r2

12 c2(D) here comes from an argument based on the attractor equations and its mathematical meaning
is not clear to us at this moment. The purpose of this paper is to consider the possibility of such a strong Bogomolov
inequality.

Let α(D, H) be a positive constant depending on a surface D and a polarization H on D. We say that the strong
Bogomolov inequality of type α holds if every H -stable bundle E on D satisfies the inequality

2rc2(E) − (r − 1)c1(E)2
≥ r2α(D, H).

It turns out that, for a general complete intersection surface D whose Picard group is generated by an ample line
bundle OD(1), there exists a stable bundle E on D violating the inequality for any α > 2. Thus we give a negative
answer to the problem mentioned above. To prove this, we construct an infinite sequence {Em}

∞

m=1 of stable bundles
of explicit ranks and Chern classes by means of the method exploited in [9,10], and compare the asymptotic behavior
of the both sides of the inequality as m becomes large.

Similarly, for bundles on varieties X of dimension n ≥ 3, we may define the strong Bogomolov inequality of the
form

(2rc2(E) − (r − 1)c1(E)2) · Hn−2
≥ r2α(X, H).

It is known that one cannot choose

α(X, H) =
1
12

c2(X) · Hn−2.

A counterexample has been given by M. Jardim for rank three bundles on a quintic hypersurface in P4 [3, Appendix B].
We notice that the stable bundles on Calabi–Yau threefolds constructed in [10] also give counterexamples of different
types. Generalizing our examples, we shall show that the inequality of the above form fails in arbitrary dimension
n ≥ 3.

2. Construction of stable bundles

Let X be a smooth complex projective variety of dimension n ≥ 2. Let H be an ample line bundle on X . The
minimal H -degree dmin(H) is defined as follows.

dmin(H) = min{L · Hn−1
| L ∈ Pic(X), L · Hn−1 > 0}.

A line bundle L on X is said to be H -minimal if L · Hn−1
= dmin(H). If X is a variety such that the Picard group

Pic(X) is generated by an ample line bundleOX (1), thenOX (1) itself is clearlyOX (1)-minimal. The following result
is essential for the construction of stable bundles in this paper.

Lemma 2.1. Let X be a smooth projective variety such that H1(OX ) = 0. Let H be an ample line bundle on X. Let
L be a line bundle on X such that there exists a divisor D ∈ |L| which is smooth and irreducible. Let L be a line
bundle on D and let Q = ι∗L, where ι : D ↪→ X denotes the inclusion map. Let E be a coherent sheaf which fits in
the non-split extension

0 → U ⊗OX → E → Q → 0.

Then E is an H-stable torsion-free sheaf if the following conditions are satisfied.

(1) L is H-minimal;
(2) Hom(E,OX ) = 0.

Proof. First we notice that, since we have Hom(Q,OX ) = 0, the assumption (2) is equivalent to the condition that the
natural map U∨

→ Ext1(Q,OX ), obtained by applying Hom( ,OX ) to the exact sequence defining E , is injective.
Thus the lemma is a consequence of [9, Lemma 1.4] when Q is a torsion-free sheaf.
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We prove the claim by induction on r := dim U . Assume that r = 1 and let

0 → OX → E → Q → 0

be the non-trivial extension corresponding to an element 0 6= ε ∈ Ext1(Q,OX ). Assume that E has a non-trivial
torsion subsheaf T ⊂ E . Let f denote the composite map T ↪→ E → Q. We see that f must be injective, since if
f had non-trivial kernel K , then K should be a torsion sheaf contained in OX , which is impossible. In particular, the
image T of T by f is also non-trivial. We apply Hom( ,OX ) to the exact sequence

0 → T → Q → Q/T → 0

and obtain the exact sequence

· · · → Ext1(Q/T ,OX ) → Ext1(Q,OX )
α
→ Ext1(T ,OX ) → · · · .

Since f is injective, α(ε) ∈ Ext1(T ,OX ) vanishes. On the other hand, we notice that T must be of the form
T = ι∗F for some rank one torsion-free sheaf F on D since D is smooth and irreducible. F can be written as
F = IZ ⊗OD(−Y )⊗L where IZ is the ideal sheaf of a closed subscheme Z of codimension at least two and Y is an
effective divisor on D (Z , Y are possibly empty). It follows that Q/T has support of codimension at least two in X ,
so we have Ext1(Q/T ,OX ) = 0. However, this implies that α is injective and hence ε = 0, which is a contradiction.
This shows that we have T = 0, that is, E is torsion-free. This proves the case r = 1.

Next we assume that the claim holds up to r − 1. Let E be a sheaf which fits in a non-split extension

0 → U ⊗OX → E → Q → 0

where U is a vector space with dim U = r . Let U1 ⊂ U be a one dimensional subspace and let U := U/U1 and
E := E/(U1 ⊗OX ). We have the following exact sequences

0 → U1 ⊗OX → E → E → 0 (∗)

and

0 → U ⊗OX → E → Q → 0. (∗∗)

Since the map U∨
→ Ext1(Q,OX ) is injective by the assumption Hom(E,OX ) = 0, the maps U

∨
→ Ext1(Q,OX )

and U∨

1 → Ext1(E,OX ) are also injective. It follows from the inductive assumption and (∗∗) that E is H -stable
and torsion-free. Then we may apply [9, Lemma 1.4] to (∗) and conclude that E is H -stable and torsion-free as
desired. �

Let X be a smooth projective variety of dimension n ≥ 2. Assume that there exists a divisor D ∈ |L| which is
smooth and irreducible and let ι : D ↪→ X denote the inclusion. Let L be a line bundle on D which is generated
by global sections. We extend the evaluation map H0(D,L) ⊗ OD → L to the map ϕ : H0(D,L) ⊗ OX → ι∗L.
It is well-known that the kernel of ϕ is locally free and its dual E(D,L) is called the elementary transformation of
H0(D,L) ⊗OX along L.

Proposition 2.2. Let X be a smooth projective variety of dimension n ≥ 2 such that H1(OX ) = 0 and Pic(X) is
generated by an ample line bundle OX (1). Assume that there exists a divisor D ∈ |OX (1)| which is smooth and
irreducible and let OD(m) := OX (m)|D . Then, for sufficiently large integer m, there exists an OX (1)-stable vector
bundle Em on X of rank rm := χ(OD(m)), the Euler characteristic of OD(m), and Chern classes

c1(Em) = OX (1), c2(Em) = mOX (1)2.

Furthermore, Em has non-trivial moduli space, that is, Ext1(Em, Em) 6= 0.

Proof. Since OD(1) is ample, for sufficiently large m, OD(m) is globally generated and hi (OD(m)) = 0 for i > 0
by Serre’s theorem. This yields h0(OD(m)) = χ(OD(m)). We set Em := E(D,OD(m)) and Um := H0(D,OD(m)).
Then Em is a vector bundle of rank rm = h0(OD(m)) on X , which fits in the exact sequence

0 → E∨
m → Um ⊗OX → ι∗OD(m) → 0. (∗)
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Applying HomOX ( ,OX ) to (∗), we have the exact sequence

0 → U∨
m ⊗OX → Em → ι∗OD(1 − m) → 0

by the isomorphisms Ext1
OX

(ι∗OD(m),OX ) ∼= ι∗OD(m)∨ ⊗ OX (1) ∼= ι∗OD(1 − m). From this sequence and
Lemma 2.1, we see that Em is OX (1)-stable. From the sequence (∗) we have

ch(Em) = rmch(OX ) + ch(ι∗OD(1 − m)).

Since the Grothendieck–Riemann–Roch formula yields

ch(ι∗OD(1 − m)) = ι∗(ch(OD(1 − m))td(D))td(X)−1,

we obtain

c1(ι∗OD(1 − m)) = [D] = OX (1),

c2(ι∗OD(1 − m)) = [D]
2
− ι∗(c1(OD(1 − m))) = mOX (1)2.

Hence Em has the Chern classes

c1(Em) = OX (1), c2(Em) = mOX (1)2.

We notice that

h0(Em) = h0(OD(m)) = rm

since h1(OX ) = 0 and h0(OD(1 − m)) = 0 for m > 1.
It remains to show Ext1(Em, Em) ∼= H1(End Em) 6= 0 for m � 0. We tensor the exact sequence (∗) with Em and

obtain the exact sequence

0 → End Em → Um ⊗ Em → ι∗(Em(m)|D) → 0.

This induces the exact sequence of cohomologies

0 → C → Um ⊗ H0(Em) → H0(D, Em(m)|D) → H1(End Em) → · · ·

since h0(End Em) = 1. Assume that Ext1(Em, Em) = 0. Then we must have h0(Em(m)|D) = r2
m − 1 since

h0(Em) = rm . We will show that this is impossible. The exact sequence

0 → Em(m − 1) → Em(m) → Em(m)|D → 0

induces the sequence

0 → H0(Em(m − 1)) → H0(Em(m)) → H0(Em(m)|D) → · · · .

This yields h0(Em(m)) − h0(Em(m − 1)) ≤ h0(Em(m)|D) = r2
m − 1. We show that this is impossible. For m � 0,

we have h1(OX (m)) = 0. Thus from the exact sequence

0 → U∨
m ⊗OX (m) → Em(m) → ι∗OD(1) → 0

we obtain the exact sequence

0 → U∨
m ⊗ H0(OX (m)) → H0(Em(m)) → H0(D,OD(1)) → 0.

Hence we obtain h0(Em(m)) = rmh0(OX (m)) + h0(OD(1)). Similarly, the exact sequence

0 → U∨
m ⊗OX (m − 1) → Em(m − 1) → ι∗OD → 0

yields h0(Em(m − 1)) = rmh0(OX (m − 1)) + 1. Thus

h0(Em(m)) − h0(Em(m − 1)) = rm(h0(OX (m)) − h0(OX (m − 1))) + h0(OD(1)) − 1.

Since the sequence

0 → OX (m − 1) → OX (m) → ι∗OD(m) → 0
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yields h0(OX (m)) − h0(OX (m − 1)) = h0(OD(m)) = rm , we have

h0(Em(m)) − h0(Em(m − 1)) = r2
m − 1 + h0(OD(1)) > r2

m − 1,

which is a contradiction. Therefore we conclude that Ext1(Em, Em) 6= 0. �

3. Strong Bogomolov inequality

Let X be a smooth projective variety of dimension n ≥ 2. We say that the strong Bogomolov inequality of type
α holds, if there exists a constant α = α(X, H) > 0 depending on X and a polarization H on X , such that every
H -stable bundle E on X , of rank r and Chern classes ci (E), satisfies

(2rc2(E) − (r − 1)c1(E)2) · Hn−2
≥ r2α.

In this section we shall give some examples of stable bundles violating such strong Bogomolov inequality. First we
consider the case of surfaces.

Theorem 3.1. Let X be a smooth projective surface such that H1(OX ) = 0 and Pic(X) is generated by an ample
line bundle OX (1). Assume that there exists a smooth divisor C ∈ |OX (1)| and α = α(X,OX (1)) > 2. Then, for
sufficiently large m, there exists an OX (1)-stable vector bundle Em of rank rm and Chern classes ci (Em) on X, such
that

2rmc2(Em) − (rm − 1)c1(Em)2 < r2
mα.

Proof. Let K X ∼= OX (k) for an integer k and d = OX (1)2. By the adjunction formula, C is a curve of genus
g := (k + 1)d/2 + 1 and the Riemann–Roch yields χ(OC (m)) = md + 1 − g. By Proposition 2.2, there exists an
OX (1)-stable bundle Em of rank rm = md + 1 − g with Chern classes ci (Em) satisfying

2rmc2(Em) − (rm − 1)c1(Em)2
= 2d2m2

+ (2 − 2g − d)dm + gd.

For any real number α > 2, r2
mα has the leading term αd2m2 > 2d2m2. Hence, for m � 0, we have

2rmc2(Em) − (rm − 1)c1(Em)2 < r2
mα. �

Corollary 3.2. Let X ⊂ Pn be a general smooth complete intersection surface of type (d1, d2, . . . , dn−2). Assume
that X is not one of the following types

(2), (3), (4), (2, 2), (3, 2), (2, 2, 2)

and that(
n−2∑
i=1

di − (n + 1)

)
n−2∏
i=1

di > 72.

Then, for sufficiently large m, there exists an OX (1)-stable vector bundle Em on X, such that Ext1(Em, Em) 6= 0 and

2rmc2(Em) − (rm − 1)c1(Em)2 <
r2

m

12
c2(X).

Proof. By the classical Noether–Lefschetz theorem [4], X is simply connected and Pic(X) is generated by OX (1) =

OPN (1)|X , if X is not one of the types listed in the corollary. Further, since the canonical bundle of X is given by

K X = OX

(
n−2∑
i=1

di − (n + 1)

)
,

K X is ample and c2(X) ≥ c1(X)2/3 = (
∑n−2

i=1 di − (n + 1))
∏n−2

i=1 di/3 > 24 by the Miyaoka–Yau inequality. Hence
the claim follows from Theorem 3.1. �
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Let D be a general complete intersection surface of type (5, d) in P4 for d � 0, which is an ample divisor with the
ample canonical bundle of a quintic Calabi–Yau threefold. The assumptions of the corollary are satisfied for D, hence
the strong Bogomolov inequality

2rc2(E) − (r − 1)c1(E)2
≥

r2

12
c2(D)

does not hold. This answers negatively to a problem posed in [3, Appendix A].
Next we consider the case of dimension n ≥ 3.

Theorem 3.3. Let X be a smooth projective variety of dimension n ≥ 3 such that H1(OX ) = 0 and Pic(X) is
generated by an ample line bundle OX (1) on X. Assume that there exists a divisor D ∈ |OX (1)| which is smooth and
irreducible. Then, for any α = α(X,OX (1)) > 0 and sufficiently large m, there exist OX (1)-stable bundles Em on X
of rank rm and Chern classes satisfying

(2rmc2(Em) − (rm − 1)c1(Em)2) ·OX (1)n−2 < r2
mα.

Proof. Let d := OX (1)n . As before, for m � 0 there exist stable bundles Em of rank rm , where

rm = χ(OD(m)) =
d

(n − 1)!
mn−1

+ O(mn−2)

and Chern classes ci (Em) satisfying

(2rmc2(Em) − (rm − 1)c1(Em)2) ·OX (1)n−2
=

2d2

(n − 1)!
mn

+ O(mn−1).

On the other hand,

r2
mα =

(
d

(n − 1)!

)2

αm2n−2
+ O(m2n−3).

Hence, for sufficiently large m, the claim holds. �

As a corollary, we obtain the following result.

Corollary 3.4. Let X ⊂ PN be a smooth complete intersection of dimension n ≥ 3 with c2(X) ·OX (1)n−2 > 0, where
OX (1) := OPN (1)|X . Then, for sufficiently large m, there exists an OX (1)-stable vector bundle Em on X of rank rm
such that

(2rmc2(Em) − (rm − 1)c1(Em)2) ·OX (1)n−2 <
r2

m

12
c2(X) ·OX (1)n−2.

We may compute rm explicitly in case n = 3. Let K X = OX (k). Then, by the adjunction formula, K D = OD(k+1).
By the Riemann–Roch formula on D, for m � 0, the rank rm of Em is given by

rm = χ(OD(m)) =
m(m − k − 1)d

2
+ χ(OD).

By the exact sequence

0 → OX (−1) → OX → OD → 0,

we have χ(OD) = χ(OX ) − χ(OX (−1)). By the Riemann–Roch formula on X , we compute

χ(OX (−1)) =
−(k + 1)(k + 2)d

12
−

k + 2
24

c2(X) ·OX (1).

Hence

rm =
m(m − k − 1)d

2
+ χ(OX ) +

(k + 1)(k + 2)d
12

+
k + 2

24
c2(X) ·OX (1).
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For example, let X be a quintic threefold in P4. Then bundles Em are of rank

rm =
5m(m − 1)

2
+ 5

and violate the strong Bogomolov inequality since c2(X) ·OX (1) = 50. These bundles have been constructed in [10].
Another example has been given by Jardim [3, Appendix B].

We give examples of bundles on Calabi–Yau threefolds whose Picard group is not isomorphic to Z, which have
been considered in [10]. Let X = P(1,1,2,2,2) [8] which is familiar in string theory [1]. Let X̂ denote the hypersurface
of degree eight in the weighted projective space P(1,1,2,2,2), which is defined by the equation

x8
1 + x8

2 + x4
3 + x4

4 + x4
5 = 0.

Let p : X → X̂ be the blow-up of X̂ along the curve of singularities and let E be the exceptional divisor. Then X
admits a K3 fibration π : X → P1. We let F denote a smooth fiber of π and let H := 2F + E . It is known that
Pic(X) is generated by H and F . We fix an ample line bundle Hq := H + q F for some q � 0. It is easy to see that F
is Hq -minimal, hence by the argument as in the previous section, Em := E(F, m H|F ) are Hq -stable bundles of rank
rm = 2m2

+ 2 and Chern classes

c1(Em) = F, c2(Em) = m H · F

so that we have

(2rmc2(Em) − (rm − 1)c1(Em)2) · Hq = 16m3
+ 16m.

Since have c2(X) · Hq = 24q + 56,

r2
m

12
c2(X) · Hq =

(4m4
+ 8m2

+ 4)(24q + 56)

12
.

Thus these Em violate the strong Bogomolov inequality.
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